0=8(x^2+4x)+17

Simple and best practice solution for 0=8(x^2+4x)+17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=8(x^2+4x)+17 equation:



0=8(x^2+4x)+17
We move all terms to the left:
0-(8(x^2+4x)+17)=0
We add all the numbers together, and all the variables
-(8(x^2+4x)+17)=0
We calculate terms in parentheses: -(8(x^2+4x)+17), so:
8(x^2+4x)+17
We multiply parentheses
8x^2+32x+17
Back to the equation:
-(8x^2+32x+17)
We get rid of parentheses
-8x^2-32x-17=0
a = -8; b = -32; c = -17;
Δ = b2-4ac
Δ = -322-4·(-8)·(-17)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{30}}{2*-8}=\frac{32-4\sqrt{30}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{30}}{2*-8}=\frac{32+4\sqrt{30}}{-16} $

See similar equations:

| 3x+12=x+1 | | 4(5x+3)=-5(5x-3)+2x | | 3(x-1)=x-25 | | -1/3p-1/2=1/2 | | (7x+41)=111 | | -34=3(5x-2)+2 | | 120-3x+4x=145 | | 5v=54=4v | | -5/3+2/7y=-3/2 | | (11x-29)=92 | | 10-6.2=h | | -250+(-100)+200+n=50 | | 8x-8x+1=-4 | | 2(3x+3)=-3(3x-5)+4x | | 90-2q-3q^2=0 | | (10x+71)=91 | | (10x+72)=91 | | 4x+8=3x+25 | | (9x+36)=90 | | n/4=16/20 | | 24=4u-u | | 2−2s=43s+13 | | 2(2x+5)=-4(5x-5)+5x | | -12x^2+6x+30=0 | | 4x−5=31 | | 52=18*3x12 | | 18=3x12 | | 2(2x+5x)=-4(5x-5)+5x | | 2m-2=6m+5 | | 5x(3x+12)=0 | | 16−2t=23t+9 | | 1/3x=1/ |

Equations solver categories